Текст Методика Методика обеспечения пожарной безопасности перевозки самовозгорающихся грузов

добавил Admin, в Методика
Скачать бесплатно

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ
ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ
И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

Федеральное государственное учреждение
«Всероссийский ордена "Знак Почета"
научно-исследовательский институт
противопожарной обороны»

МЕТОДИКА ОБЕСПЕЧЕНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ ПЕРЕВОЗКИ САМОВОЗГОРАЮЩИХСЯ ГРУЗОВ

МОСКВА 2006

Методика позволяет определять условия самовозгорания грузов с учетом размеров и формы используемых на практике грузовых отсеков, а также климатических особенностей основных регионов транзита. В соответствии с ней можно рассчитать критическую температуру атмосферного воздуха, установить класс опасности самовозгорающихся грузов, определить безопасные размеры их компактной укладки при транспортировании.

Методика предназначена для региональных подразделений ГПС и специализированных организаций.

Разработана сотрудниками ФГУ ВНИИПО МЧС России: д-ром техн. наук, проф. И.А. Болодьяном; д-ром техн. наук, проф. Ю.Н. Шебеко; д-ром техн. наук, проф. В.И. Горшковым; канд. техн. наук И.А. Корольченко; А.В. Казаковым; Д.Н. Соколовым.

Утверждена ФГУ ВНИИПО МЧС России 29.06.2006 г.

Согласована УГПН МЧС России 21.07.2006 г.

Содержание

I. ОБЩИЕ ПОЛОЖЕНИЯ

II. ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ПРОЦЕССА ТЕРМООКИСЛЕНИЯ МАТЕРИАЛОВ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

2.1. Аппаратура

2.2. Подготовка и проведение испытаний

2.3. Расчет параметров кинетики термоокисления материалов

III. РАСЧЕТ УСЛОВИЙ САМОВОЗГОРАНИЯ ГРУЗОВ

3.1. Расчет параметра Франк-Каменецкого δ0 для грузового пространства транспортных средств

3.2. Расчет критической температуры

3.3. Расчет времени индукции

IV. ОПРЕДЕЛЕНИЕ КЛАССА ОПАСНОСТИ САМОВОЗГОРАЮЩИХСЯ ГРУЗОВ И РАЗРАБОТКА ПРОФИЛАКТИЧЕСКИХ МЕРОПРИЯТИЙ

4.1. Определение класса опасности грузов

4.2. Определение безопасных размеров компактной укладки материала

Список литературы

ПРИЛОЖЕНИЕ 1 Пример расчета кинетических параметров

ПРИЛОЖЕНИЕ 2 Параметры кинетики процесса термоокисления некоторых материалов

ПРИЛОЖЕНИЕ 3 Пример расчета δ0 грузового пространства

ПРИЛОЖЕНИЕ 4 Значения δ0 для основных типоразмеров грузовых пространств

ПРИЛОЖЕНИЕ 5 Пример расчета критической температуры

ПРИЛОЖЕНИЕ 6 Пример расчета времени индукции

ПРИЛОЖЕНИЕ 7 Пример определения класса опасности самовозгорающегося груза

ПРИЛОЖЕНИЕ 8 Пример определения безопасных размеров компактной укладки материала

I. ОБЩИЕ ПОЛОЖЕНИЯ

1. Методика предназначена для определения возможности самовозгорания материалов в условиях транспортирования на основании экспериментально-аналитических исследований. Получаемые результаты позволяют отнести подобные грузы к соответствующим классам опасности (согласно классификации ГОСТ 19433 [1]) и разрабатывать мероприятия, предотвращающие самовозгорание материалов при перевозке.

2. Определение возможности теплового самовозгорания грузов выполняется по результатам расчетов критической температуры и периода индукции процесса для температуры окружающей среды, превышающей верхнюю границу климатического перепада среднесуточных значений для регионов транзита (40 °С).

3. Определение класса опасности грузов выполняется в следующей последовательности:

а) на основании экспериментальных результатов определения температур самовозгорания образцов материала в лабораторных условиях рассчитываются параметры кинетики процесса. В расчетах могут также использоваться опубликованные значения кинетических характеристик для материала аналогичной марки;

б) для грузового пространства рассматриваемых транспортных средств вычисляется параметр δ0;

в) рассчитывается критическая температура Ткр окружающей среды;

г) при Ткр < 40 °С определяется период индукции процесса для температуры среды 40 °С (минимальное значение для всех условий транспортирования);

д) определяется класс опасности груза при перевозке рассматриваемым транспортным средством. Для других условий транспортирования повторяют расчеты по п.п. 3б - 3г;

е) при выявлении возможности самовозгорания груза в условиях транспортирования рассчитывают безопасный размер компактной укладки материала для температуры среды 40 °С (использование такой укладки предотвращает самовозгорание материала при перевозке).

4. Рекомендации по обеспечению пожарной безопасности сезонного транспортирования самовозгорающихся грузов (в холодный период года при среднесуточных температурах окружающей среды ниже Ткр) должны обосновываться в соответствии с настоящей методикой организациями, имеющими лицензию на проведение соответствующих работ.

II. ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ПРОЦЕССА ТЕРМООКИСЛЕНИЯ МАТЕРИАЛОВ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

2.1. Аппаратура

Аппаратура для определения кинетических параметров процесса термоокисления материалов включает в себя следующие элементы:

2.1.1. Термостат вместимостью рабочей камеры не менее 40 дм3 с терморегулятором, позволяющим поддерживать постоянную температуру от 60 до 500 °С с погрешностью не более ±1 °С.

2.1.2. Корзинки кубической или цилиндрической формы высотой 15, 30, 35, 50, 70, 100, 140 и 200 мм. Диаметр цилиндрической корзинки должен быть равен ее высоте. Материалом для корзинок служит сетка из латуни или нержавеющей стали для сыпучих материалов (с размером ячеек не более 1 мм) или листовая нержавеющая сталь толщиной не более 1 мм - для плавящихся веществ.

2.1.3. Термоэлектрические преобразователи (термопары ТХА и ТХК) с максимальным диаметром рабочего спая не более 0,8 мм.

2.1.4. Измеритель термоэлектродвижущей силы, позволяющий осуществлять визуализацию изменения температуры образца материала во времени с записью на бумажном или электронном носителе.

2.1.5. Весы лабораторные с наибольшим пределом взвешивания 1000 г и точностью взвешивания 0,01 г.

2.2. Подготовка и проведение испытаний

2.2.1. К корзинкам крепят по три термоэлектрических преобразователя таким образом, чтобы один конец одной термопары находился внутри корзинки в ее центре, а второй - на расстоянии не более 5 мм от внешней ее стороны (на высоте центра корзинки). Эти термопары соединяют по дифференциальной схеме, с тем чтобы они измеряли разность температур между образцом материала и температурой рабочей камеры. Для фиксирования температуры в термостате (температуры испытаний) рабочий конец третьей термопары располагают на расстоянии (30±1) мм от стенки корзинки на высоте ее центра.

2.2.2. Корзинки заполняют исследуемым веществом и взвешивают на весах. При испытаниях листового материала его набирают в стопку, соответствующую внутренним размерам корзинки. В образцах монолитных материалов предварительно высверливают до центра отверстие диаметром не более 7 мм для термоэлектрического преобразователя.

2.2.3. Свободные концы термопреобразователей подсоединяют к измерителю термоэлектродвижущей силы для регистрации изменения разности температур в центре образца и температуры в рабочей камере термостата.

2.2.4. Корзинку помещают в центр термостата, нагретого до заданной температуры (например, 200 °С) и наблюдают за изменением температуры в центре образца.

2.2.5. Самовозгорание образца проявляется при увеличении разности температур, фиксируемой дифференциальной термопарой, до величины более 100 °С или визуальном определении возгорания.

2.2.6. Если при первом испытании самовозгорание не происходит в течение времени, указанного в табл. 1, то испытание с новым образцом материала того же размера проводят при температуре на 20 °С больше заданной. Если самовозгорание произошло, то испытание проводят при температуре меньшей на 10 °С.

Таблица 1

Размер образца, мм

Продолжительность испытаний, ч

35

6

50

12

70

24

100

48

140

96

200

192

2.2.7. Испытания продолжают с образцами данного размера при различных температурах рабочего пространства термостата до достижения минимальной температуры, при которой образец самовозгорается, а при температуре ниже минимальной на 1 °С самовозгорания не происходит. При этих температурах выполняют по два эксперимента. Минимальную температуру, при которой исследуемый материал самовозгорается, принимают за температуру самовозгорания образца данного размера.

2.2.8. Аналогичные испытания проводят с образцами исследуемого вещества в корзинках других размеров. Результаты испытаний оформляются в виде табл. 2.

Таблица 2

Размер образца, мм

Температура самовозгорания Ткр

°С

К

 

 

 

2.3. Расчет параметров кинетики термоокисления материалов

Исходными данными для определения параметров кинетики термоокисления являются:

- данные табл. 2 для критической температуры самовозгорания Tкр º Т0 (К) образцов размером D (м);

- коэффициент теплопроводности материала λ, Вт·м-1·К-1;

- теплоемкость исследуемого материала с, Дж·кг-1·К-1;

- теплота реакции Q, Дж·кг-1.

Расчет выполняется в следующем порядке.

2.3.1. Для каждого размера образца рассчитать число Рэлея по уравнению:

                                                                                                        (1)

где g - ускорение силы тяжести, м·с-2;

v - кинематическая вязкость воздуха при температуре Т0, м2·с-1;

а - температуропроводность воздуха при температуре Т0, м2·с-1;

D - высота образца, м;

R - универсальная газовая постоянная, Дж·моль-1·К-1);

Т0 - температура рабочего пространства термостата, К;

Е - энергия активации реакции окисления. Допускается принимать равной 100 кДж·моль-1.

Для облегчения расчетов зависимость комплекса g/va от температуры в диапазоне Т0 = (350÷800) К может быть рассчитана по формуле

                                                                                                       (2)

2.3.2. Для всех размеров образцов вычислить коэффициенты теплоотдачи α по уравнениям:

при 5·102 < Ra 2·107                                                                                                                                                       

                                                                                     (3)

при < Ra > 2·107                                                                                                                                                                      

                                                                                   (4)

где σ=5,67·10-8 - постоянная Стефана-Больцмана, Вт·м-2·К-1.

Коэффициент теплопроводности воздуха при температуре Т0 может быть определен по формуле

λв = 6,98·10-3 + 6,41·10-5 Т0.                                                                                       (5)

2.3.3. По величине α, коэффициенту теплопроводности материала λ и половине высоты r = D/2 вычисляют критерии Био для каждого образца:

                                                                                                                  (6)

2.3.4. Функцию φ(Bi), учитывающую интенсивность теплообмена образца с воздухом, определяют по уравнению

                                                   (7)

2.3.5. Рассчитывают параметры β и γ, характеризующие индивидуальные свойства реакции окисления:

                                                                                                                    (8)

                                                                                                                   (9)

2.3.6. С учетом интенсивности теплообмена и характеристик реакции для каждого размера образца материала рассчитывают критическое значение параметра Франк-Каменецкого:

δкр = δ0φ(Вi) (1+β) (1+2,4γ2/3),                                                                                   (10)

где δ0 - критическая величина параметра δ при интенсивном теплообмене, равная 2,52 для образцов кубической формы и 2,76 - для цилиндра с высотой, равной диаметру.

Результаты вычислений по формулам (1) - (10) сводят в табл. 3.

Таблица 3

Размер r, м

Т0, К

Ra

α, Вт·м-2·К-1

Bi

φ(Bi)

β

γ

δкр

 

 

 

 

 

 

 

 

 

2.3.7. Зависимость критического значения параметра Франк-Каменецкого δкр от кинетических параметров реакции окисления

                                                                                              (11)

записывают в виде

                                                                                                               (12)

где

                                                                                                              (13)

                                                                                                                 (14)

ρ - плотность упаковки материала, кг·м-3;

k0 - константа скорости реакции, 1·с-1.

2.3.8. По уравнению (13) для каждого размера образца рассчитывают величину М. С учетом значений М и N по уравнению (12) методом наименьших квадратов или программ обработки экспериментальных данных для персональных компьютеров Eureka, Curve Expert 1.3, Mathematica 3.0, Mathematica 4.0 и других определяют численные значения N и энергию активации Е.

2.3.9. Вычисляют предэкспоненциальный множитель реакции окисления Qk0/λ путем деления N на Е. Данные расчетов по уравнениям (12) - (14) сводят в табл. 4.

Таблица 4

Размер r, м

Т0, К

М, Дж·м·К·кг-1·моль-1

N, Дж·м·К·кг-1·моль-1

Е, Дж·моль-1

Qk0/λ, м·К·кг-1

 

 

 

 

 

 

2.3.10. Если величина энергии активации, вычисленная в п. 2.3.8, отличается от ранее принятой и равной 100 кДж·моль-1 более чем на 5 %, расчеты по п.п. 2.3.1 - 2.3.10 необходимо повторить с новым значением энергии активации. Процесс итераций необходимо выполнять до тех пор, пока энергии активации в начале и конце расчета не будут отличаться менее чем на 5 %.

III. РАСЧЕТ УСЛОВИЙ САМОВОЗГОРАНИЯ ГРУЗОВ

3.1. Расчет параметра Франк-Каменецкого δ0 для грузового пространства транспортных средств

Исходными данными для расчета параметра δ0 являются форма и размеры грузового пространства.

Расчет выполняется в следующем порядке.

3.1.1. Вычисляют отношение квадрата характерного размера грузового пространства r2 (минимального размера по одной из осей координат) к квадрату эквивалентной сферы Франк-Каменецкого R02 по одному из соотношений.

Прямоугольный цилиндр (цилиндрические канистры, бочки и т.п.) радиусом r, высотой 2d, p = r/d:

                                                                                       (15)

Прямоугольный брус (мешок, контейнер, вагон, штабель упаковок материала, заполняемое насыпью грузовое пространство) со сторонами 2а, 2b, 2с, р = b/а, q = c/a:

                   (16)

где

3.1.2. Находят радиус эквивалентной сферы Семенова по формуле

                                                                                                                     (17)

где V - объем упаковки материала, м3;

S - ее внешняя поверхность, м2.

3.1.3. Определяют отношение квадратов радиуса эквивалентных сфер Франк-Каменецкого и Семенова:

                                                                                                  (18)

3.1.4. Вычисляют фактор формы для заданной геометрии упаковки материала:

j = 3σ-1.                                                                                                                      (19)

3.1.5. Находят функцию F(j) по формуле

                                                                                                            (20)

3.1.6. Рассчитывают величину параметра Франк-Каменецкого с помощью формулы

                                                                                         (21)

Результаты расчета значений δ0 для основных типоразмеров грузового пространства различных транспортных средств приводятся в прил. 4.

3.2. Расчет критической температуры

Исходными данными для расчета критической температуры при транспортировании веществ и материалов являются:

- плотность упаковки материала, кг·м-3;

- ксоффициент теплопроводности материала λ, Вт·м-1·К-1;

- теплоемкость исследуемого материала с, Дж·кг-1·К-1;

- теплота реакции Q, Дж·кг-1;

- энергия активации реакции окисления Е, Дж·моль-1;

- предэкспоненциальный множитель Qk0/λ, м·К·кг-1.

Расчет выполняется в следующем порядке.

3.2.1. Для заданной формы упаковки материала из прил. 4 выбрать или рассчитать в соответствии с разд. 3.1 величину критерия Франк-Каменецкого δ0.

3.2.2. Подставив полученную величину в уравнение (11) вместо δкр и решив его относительно Т0, найти нулевое приближение для температуры самовозгорания.

3.2.3. По формуле (1) п. 2.3.1 вычислить значение критерия Рэлея для заданного размера упаковки материала.

3.2.4. Рассчитать коэффициент теплоотдачи по уравнению (4) п. 2.3.2 и величину критерия Био по формуле (6).

3.2.5. Определить численное значение функции φ(Bi) по уравнению (7).

3.2.6. По формулам (8) и (9